MinGPU: A minimum GPU library for Computer Vision

Pavel Babenko and Mubarak Shah
University of Central Florida

Computer Vision Lab, School of Electrical Engineering & Computer Science, University of Central Florida, Orlando, FL
Phone: (407) 823-4733. Fax: (407) 823-0594
E-mail: pavelb@cs.ucf.edu
Abstract. In computer vision it is becoming popular to implement algorithms in whole or in part on a Graphics Processing Unit (GPU), due to the superior speed GPUs can offer compared to CPUs. In this paper, we present GPU implementations of two well known computer vision algorithms – Lukas-Kanade optical flow and optimized normalized cross-correlation, as well as a homography transformation between two 3D views. We also present a GPU library, MinGPU, which contains, as minimal as possible, all of the necessary functions to convert an existing CPU code to GPU. We provide timing charts and show, in particular, that while our MinGPU implementations of optical flow algorithm perform few hundreds times faster than CPU, our MinGPU implementation of homography transformations perform approximately 600 times faster than its C++ CPU implementation and more than 7,500 times faster than its MatLab CPU implementation.

Keywords. GPU, Computer Vision, optical flow, normalized cross-correlation, homography transformation.
1. Introduction

Our paper makes two contributions to computer vision. First, we have implemented three popular computer vision methods on GPU. For each of these methods, we present timing and we provide a detailed timing comparison of GPU homography transformation to its non-GPU implementations. Second, we have created a small C++ class library, MinGPU. We intentionally designed the library and interfaces to be as minimal as possible. MinGPU provides simple interfaces which can be used to load a 2D array into the GPU and perform operations on it. All GPU and OpenGL related code is encapsulated in the library; therefore users of this library need not to know any details on how GPU works. Because GPU programming is currently not that simple, this library can facilitate an introduction to GPU world to researchers who have never used the GPU before. The library works with both nVidia and ATI families of graphics cards and is configurable. It is available online on our web site at [25].

This paper is organized as follows: in Introduction, we present general information on the current state of art and the evolution of GPUs, their architecture and design. In the Section 2, we give a brief introduction of our C++ class library for the GPU - MinGPU. The details on MinGPU implementation can be found in Appendix A. In the Section 2 we also show how to implement few common computer vision algorithms with MinGPU, like image derivatives, Gaussian smoothing and image pyramids. Sections 3 through 5 contain the details on MinGPU implementations of three computer vision methods as well as speed comparisons and discussions. Three methods are: Lukas-Kanade variant of optical flow, normalized cross-correlation (used, for example, in MACH filters), and homography transformation between two 3D views. The Appendix B contains code listings of all programs mentioned in Sections 2 to 5.

1.1
Graphics processors

Most of today’s graphics cards from the largest GPU makers, nVidia and ATI, contain two processors, the vertex processor and the fragment processor.

Vertex processor

All graphics cards operate on 3D polygons. Every polygon is defined by 3D coordinates of its vertex points. For example, every triangle is defined by three vertex points given by (x, y, z). The camera point is invariably set to be (0, 0, 0). When the camera moves, the coordinates of all polygon points must be recomputed to reflect a change in the camera position. This operation is performed by the so-called vertex processor. Vertex processors are specially designed to perform this operation and thus are able to highly optimize the speed of coordinate transformations. After coordinates are recomputed, the vertex processor determines which polygons are visible from the current viewpoint.

Fragment processor

After the vertex processor re-computes all of the vertex coordinates, the job of the fragment processor is to cover the visible parts of the polygons with textures. The fragment processor does this with a help of the so-called ‘shader’ programs. Originally, in the computer graphics world, the purpose of the ‘shader’ programs was to add graphics effects to textures like shades (hence comes the name), but now this feature is being inherited by the general-purpose GPU users. Few years ago all shader programs were written in the assembly language. However, as graphics hardware evolved and became capable of executing much larger shader programs, a need for a specially designed language became evident. Most contemporary shader programs are C-like programs written in Cg language. Cg language was created by nVidia; its name translates as ‘C for graphics’. nVidia supplies good quality manuals and examples on Cg, which can be found in Cg Toolkit [9].

The most important difference between contemporary CPUs and GPUs is that GPUs run programs concurrently, being in fact SIMD-type processors. The programs are executed for every output texture pixel independently. Thus, if the GPU has 8 instruction pipelines in the fragment processor, it is able to execute the same program on up to 8 texture pixels simultaneously. Contemporary fragment processors have 16-128 instruction pipelines.

While both the vertex and fragment processors are programmable, we are more interested in the fragment processor because it is specifically designed to work with textures which, in our case, can be viewed as 2D data arrays. On the other hand, vertex processor is optimized to work with pixels. Therefore, all algorithms in this paper are designed to work on a fragment processor.

1.2
Graphics cards evolution and productivity

About 5-7 years ago, graphics processors were not generally suitable for non-graphics use, because of severe design restrictions. Thus, prior to 2003 when nVidia introduced its GeForce series FX cards, shader programs were limited to less than 256 static assembly instructions. They did not support conditional statements like “if” and “for”, there were typically no more than four pipelines, clock rate was below 300MHz, and the amount of installed memory usually did not exceed 32-64MB. However, an increase in the capabilities of the graphics processors in later years tended to exceed Moore’s Law. On an average, every year sees more than 2.4 times increase in the performance rate [28]. In April 2004, nVidia introduced its series 6000 of GeForce graphics cards [21], which supported a new shader model 3.0 which had much better programming capabilities than 5000 series cards. The series 6000 supported 65,535 static assembly instructions (due to that it became possible to put average-sized programs on the GPU) as well as up to 16 pipelines. A year later nVidia introduced its GeForce 7000 series line which is now a standard video card in most desktop computers. By that time graphics cards became well suitable for the general-purpose operations which gave rise to the new community of general-purpose GPU users (GPGPU). This community maintains a website [16] which has lots of useful code and examples for those who want to use GPU for non-graphics programming. The 8000s, the most recent series of nVidia cards as to date, has seen the light in mid-2006. The 8000s features up to 128 pipelines, with a pipeline clock rate up to 1.5GHz, and on-board memory of up to 384MB. Apart from a startling increase in the productivity, it brought a major change in the GPU philosophy. Both vertex and fragment processors are now combined into one stream processor [31], which is able to perform a set of scalar operations. This design ensures that neither of processors is idle at any time. It is also the most expensive series of graphics cards ever, whose costs are currently comparable to a desktop computer.

In the late 2006, both graphics cards manufacturers, nVidia and AMD (who purchased ATI in 2006), claimed that they will directly support the general purpose computing in newer products. By 2007, both nVidia and AMD devised new software technologies which specifically target GPGPU developers. These are nVidia’s CUDA [30] and ATI CTM technologies [2] which we discuss in Section 1.6. In addition, in June 2007 nVidia released their first graphics chip oriented to GPU computing only, Tesla C870. Tesla is a powerful graphics station with no video output based on GeForce 8800 technology. Different versions of Tesla contain either 1, 2 or 4 GeForce 8800-series GPUs. Each GPU is equipped with 1.5GB of memory and works at an increased clock rate.
The competitor, AMD, is also keeping up. Their latest hardware, ATI Radeon HD 2900 XT of series R600 contains 320 shader pipelines, which work at 742 MHz clock rate. For this video card, memory bus width is 512 bits, which is significantly more than the 384 bit bus width in competitive nVidia series 8800.
A good introduction to scientific computing with GPU can be found at [15, 19].

Our MinGPU library is designed to work on nVidia 7000 series cards as well as on ATI Radeon cards series R400 (ATI X800) and later versions. We have designed and tested our library on nVidia 7300LE card, which is the most basic card in 7000 series, and now is in widespread use. Some functionality may work on nVidia 6000 series cards as well as on former ATI cards.

1.3
GPU vs CPU performance comparison

At the time of writing, the typical upscale desktop computer is equipped with Intel Core 2 Duo processor working at 2.4GHz. Let’s roughly compare a productivity of this processor to a productivity of nVidia 7300LE (light edition) GPU, which is a ordinary graphics card installed in the same desktop.

The clock rate of 7000 series nVidia GPUs lies in 400-700MHz range. 7300LE runs at 450MHz. There are 4-24 pipelines in fragment processor in 7000 series [29]. We also take into account that nVidia GPU pipelines can typically process two pixels in one clock cycle, and they process each of pixel’s 4 color channels simultaneously. Each pixel is represented as 4-float number (RGBA). Thus, if we pack our array so that each of RGBA floats assumes a data value (more on it in Section 2) we gain an additional 4 times speedup.

After we multiply all speedups, nVidia 7300LE works as a processor with a virtual 57Ghz rate, due to parallelism; this rate is already 6 times higher than that of Intel Core 2 Duo 2.4GHz CPU. However, this is not all.

In today’s computers the onboard installed memory (DRAM) tends to be hundreds of times slower than memory installed on both CPU caches. Therefore, program execution time greatly depends on the cache hit rate, which is typically about 90-98% for the modern computers.

There are two considerations with respect to caches in the GPUs. When the fragment processor processes texture, it cannot write into a position other than the position of a current pixel. Thus, for current pixel, (x, y), the shader program can write an output only to a position (x, y) in the output texture. This is a very drastic limitation of the GPUs - every program can only modify the value at the location of a pixel it currently processes. However, there is a flip side to this limitation – it is very good for the cache write optimization, because the memory write address is always known. Thus, it is possible to attain 100% cache write hit rate for GPU.

Second, because the same program is run for every pixel in the texture, it often results in a predictable pattern of memory reads. Unless you are using the conditional statements in your GPU program memory reads have a perfectly predictable pattern. Therefore, it is natural to expect that cache read hit rate will be higher for the GPUs than for CPUs.

Let’s make a rough estimate of a marginal case when GPU cache hit rate for both reads and writes is equal to 100%. We make the following assumptions: DRAM memory is 500 times slower than cache memory, for both CPU and GPU an access to the cache takes 2 clocks on the average, and CPU cache hit rate is 90%. These are all reasonable assumptions for commodity computers today. In this example, the GPU with 100% cache hit rate will work about 26 times faster than the CPU with 90% cache hit rate.

We have found that the modest GPU card installed in our computer can work 32-624 times faster than the latest CPU. And if we opt to install the latest nVidia 8800 GPU (1.5GHz, 128 pipelines) we gain an additional 26 times speedup.

On the other hand, it is not possible to run a conventional processor at more than 4GHz clock speed due to physical constraints [32]. The only theoretical workaround to this limit lies in the use of different base technologies like quantum technology, which at the time of writing is years ahead. On the other hand, researchers in computer vision know well that many vision algorithms are not currently able to run in real-time due to their high computational complexity. Therefore, we feel that the one possible way to make them real-time in observable future is the use of parallel technology, such as present in the graphics processors today.

1.4
GPU limitations

All GPUs suffer from two very drastic design limitations. The first limitation is, ironically, the very fact that GPU computations are done in parallel. The algorithm must be ready to work in multi-thread mode in order to work on the GPU, which is not the feature of many algorithms. In the GPU every pixel in 2D texture is processed independently from others. It may not be possible to know the sequence in which pixels are processed therefore there is no way to pass any data between pixels while they are processed. For example, let’s consider a popular connected components algorithm which is used in many vision algorithms today, like Canny edge detector. There exist two versions of a connected components algorithm: recursive and non-recursive. A recursive version cannot be implemented on the parallel processor, because recursiveness implies the knowledge of the order in which pixels are being processed which we don’t have. A non-recursive version of the connected components algorithm makes use of a running variable which contains the largest region label currently assigned. There is no way, as it was stated above, to maintain this counter on the parallel processor. There exist some parallel versions of connected components [17], however, those versions use binary structures like graphs and trees which are hard to implement on the GPU. As of today, we do not know of any successful implementation.

We have already mentioned the second limitation in the previous subsection. In the GPU, when one processes a pixel at (x, y) location one can only write the result into (x, y) location of the output texture. There may be more than one output texture (as many as 4-24 for 7000 series and up to 48 in 8000 series). We can also consider the fact that every pixel is comprised of 4 floats (RGBA value), so for the 7300LE card one can write 16 values for every pixel processed, but they cannot be written into any other than (x, y) location in the output textures.

For example, let’s consider building a color histogram of the grayscale image. Every pixel in the input image may take values in 0 to 255 range which makes for 256 bins in the color histogram. For every pixel processed, we must increment one of 256 bins, which, due to the above limitation is obviously not possible to do on the GPU. This is a very simple algorithm yet it is not possible to implement it on the GPU. One source [33] came up with an approach which computes approximate color histogram on small set of input values.
As many other authors suggest, the most promising algorithms to implement on the GPU are filter-like algorithms, which process every pixel independently of others. Among good examples are Gaussian smoothing, convolutions, image pyramids, geometric transformations, image de-noising, cross-correlation as well as many other algorithms.

1.5
GPU bottleneck

The contemporary computer architecture features one bottleneck with respect to the GPU which we cannot avoid mentioning. This is a transfer rate between main (CPU) memory and GPU memory. All latest computers are equipped with PCI Express memory bus, which is the best memory bus to date in desktop computers. This memory bus has a full duplex transfer rate of 250MB/s for every lane (500MB/s for PCI Express 2.0 released in January 2007). There may be up to 32 serial lines, however it is natural to expect that commodity computers are equipped with less than that. In practice, we measured main memory to GPU memory bus transfer rate of our new DELL XPS 410 desktop to be about 860MB/s. At this speed it would take about 4-5 ms to transfer an array of 1 million 32-bit floating point numbers (1k x 1k image) from the CPU to GPU. Simple operations (addition, for example) over the same array in the CPU (Core 2 Duo 2.4MHz) would take about 4 ms. This means that for the simple array operations time required to transfer an array from CPU to GPU is comparable to the time required for applying an operation in the CPU. An example of this bottleneck is given in the beginning of Section 2; we would like to add here that some older GPU cards feature slower GPU to CPU transfer rate than CPU to GPU.

1.6
CUDA technology

In the end of 2006, along with 8800 series GeForce cards nVidia introduced CUDA (Compute Unified Device Architecture) technology which is a blend of software and hardware technologies. CUDA works only with 8800 series nVidia cards. CUDA specifically targets GPGPU users; it includes C compiler that compiles existing C programs into binary codes executable on nVidia graphics processor. All user needs to do is to supply compiler an existing C code after making some minimal changes [30]. CUDA bypasses OpenGL completely, which gives considerable speedup and also makes programs OpenGL-independent.

However, being a high-level technology CUDA is not usually capable of performing the entire computation in the GPU. As mentioned in the previous subsections few algorithms can be executed entirely on the GPU. Thus, as a consequence, it is probable that some of the C code will be executed on the CPU and some on the GPU; the execution speed will be a function of the memory bus speed discussed above. CUDA users cannot control how the compiled C code is executed. On contrary, in our paper we use relatively low-level methods of accessing graphics processor which gives us full control of how our code is executed on the GPU. Obviously, only by directly controlling the graphics processor one can get the most of it.

We tested the homography transformation algorithm (described in Section 5) with CUDA on nVidia GeForce 8800 graphics card. We compared performances of homographies Cg GPU code and homographies C CPU code. We compiled homographies C CPU code with CUDA and ran. We found that programs run directly on GPU about 10 times faster than the programs compiled and run with CUDA which speaks in favor of our approach.

AMD recently introduced a new technology called CTM, which is similar to CUDA. CTM works with AMD Stream graphics processor introduced in November 2006. It features 48 shader pipelines, up to 1GB of memory and PCI Express 16 lane support. Also, AMD recently unveiled plans to integrate CPU and GPU in new graphics hardware. The embedded CPU will locally handle all sequential code which is not possible to execute on GPU, thus avoiding memory bottleneck.
1.7
Related work

Not much work has been reported on general-purpose computation on GPU before 2000. Since 2002 there is a lot of interest in GPU. A comprehensive list of papers is available at [7]. In 2001, Rumpf and Strzodka described a method to implement level sets on GPU [35]. In 2002, Yang and Welch studied image segmentation and smoothing on graphics hardware [40]. There were several papers published in 2003-2004, many of them appeared in computer graphics conferences rather than computer vision. Thus, in 2003 Moreland and Angel published a paper in SIGGGRAPH conference on how to implement Fast Fourier transform on GPU [28]. In the same year, Colantoni et al. described color space conversions, PCA and diffusion filtering on GPU [6]. In 2004, ‘GPU Gems 2’ book dedicated a chapter to computer vision on GPU [11]. It discussed correcting radial distortions, Canny edge detector (partly), tracking hands and image panoramas on GPU. The same year, Yang and Pollefeys published a CVPR paper on implementation of real-time stereo on GPU [39]. Ohmer and Maire implemented a face recognition system using Kernel PCA and SVM [34]. Labatut et al. implemented level set-based multi-view stereo [22]. Well-known SIFT algorithm was implemented in 2007 by Heymann et al. [18]. Among other implemented methods were [7]: Generalized Hough Transform, skeletons, depth estimation in stereo, motion estimation, 3D convolutions, contour tracking, segmentation and feature tracking and matching. However, since pre-2005 papers used previous generations of graphics hardware, their contribution is often rather outdated.
MinGPU is a library which incapsulates all graphics-related routines from the end user, which is especially useful for people who do not have particular skills or desire to delve into low-level details of GPU programming. MinGPU can be used as a basic block of any GPGPU application, it helps to implement any algorithm on GPU. Besides our library, there exists another library which is dedicated to computer vision on GPU, OpenVIDIA [12, 33]. This is an open source library which is a collection of many useful vision algorithms, like edge and corner detection, feature-based corner and object tracking, image enhancement/preprocessing routines and so on. The complete algorithm list can be found at [33]. The other issue of interest about OpenVIDIA is that it maintains a web page which lists many recent computer vision related papers [7]. However, this library is not built upon a reusable core. Another notable effort is a BrookGPU library [4]. BrookGPU was conceived as an extension to C language which supports stream programming and data-parallel constructs. It includes a compiler and run-time support libraries. This project is not under development since 2004. The latest v0.4 release of BrookGPU can be downloaded from [5]. Yet another open source GPU library is Sh [36]. Sh is a GPU metaprogramming library designed in C++. On contrary to BrookGPU, it is still being developed; the latest version v0.8 was produced in 2006. However, both these medium-sized open-source projects feature no documentation and are complex to a user without advanced knowledge of graphics processors and C++ programming.
2. Software interface

In computer vision, we often encounter the situations when we need to process every point of a 2D array (usually an image) with a double loop like this

for (row = 0; row < MaxRow; row ++)

{

 for (col = 0; col < MaxCol; col ++)

 {

 // do something

 }

}

Any 2D array can be represented as a GPU texture. If we do not need to carry over any information between the points of this array, we can implement the inner part of this double loop as a shader (Cg) program. The array is uploaded into the GPU as texture. Then, the shader program is run and the output texture downloaded back into main memory.

In this section we introduce the smallest possible library, MinGPU, which can implement the above mentioned code on a GPU. We attempt to convert the CPU code into GPU in the simplest possible manner. In the Section 2.2, we present an implementation of this double loop in MinGPU. The rest of the section is dedicated to MinGPU examples based on simple vision algorithms.

This section uses a learn-by-example technique. We progress from easy towards more elaborate examples. We show some simple examples: taking image derivatives, applying Gaussian smoothing, and computing image pyramids. In the following sections, we present GPU implementation of a few popular vision algorithms.

2.1 MinGPU library

Our implementations of vision algorithms are based on MinGPU library. MinGPU is available for download at [25]. We have also set up a Google user group ‘MinGPU’ for the MinGPU user community [26].

MinGPU is a C++ class library. Because of incapsulation paradigm, its users do not need to know any details about its inner structure, so they do not need to know the details of how the fragment processor or OpenGL drivers work. MinGPU contains just two classes: Array and Program. Class Array defines an array in the GPU memory, while class Program defines a Cg program in the GPU memory. All class methods are listed in Appendix A. In a simple scenario, user prepares data array and uploads it to the GPU using methods of class Array. Cg program is then loaded and compiled. Optionally, program parameters are set using the method of class Program. The Cg program is then run and the results are generated in the GPU memory, which are then downloaded to CPU memory by another call to method of class Array. The following example illustrates this.

2.2 MinGPU ‘Hello, World!’ example
Let’s convert this simple CPU code into GPU:

for (row = 0; row < MaxRow; row ++)

{

 for (col = 0; col < MaxCol; col ++)

 {

 Array[row][col] ++;

 }

}

All code listings are given in the Appendix B. The code which implements ‘Hello, World’ on MinGPU is given in Listing 1. This as well as the most other listings contains two pieces: a C++ program and a Cg program. Let’s first look at C++ program. It matches a scheme we discussed above in a straightforward way: we create both array and Cg program, copy array to a GPU, set program parameters and run it.
As for Cg program, of course, we won’t be able to cover the entire Cg language here, which you could find in a Cg user manual [8], but at least we can highlight some key points. First, our first program contains just one function, main, which is its entry point. There are two input parameters to this function, parameter coords of type float2 and parameter texture of type samplerRECT. Parameter coords is bound to pre-defined name TEXCOORD0, which contains (x, y) coordinates of the currently processed pixel. Pre-defined names are set automatically by the hardware, we do not need to provide values for these. On the other hand, parameter texture is a regular parameter which we must initialize with a call to the SetParameter function. It is our input array; one we want to increment by 1. The standard Cg function texRECT fetches a value of texture array at coords coordinates. In this simplified example, we used the same Cg texture as both an input and an output array.
We store intermediate value in the result variable which is of standard 4-float RGBA type. The assignment string result = y + 1 increments each of four float values in result by 1. In this way, every float in result would contain the same value.
Cg functions return one 4-float RGBA value which is the generated value for the current (x, y) texture pixel. When we download this value to the CPU, in luminance mode (discussed in the following subsection) OpenGL drivers take a mean of 4 RGBA floats to produce a single luminance value for each texture pixel. In color mode all 4 RGBA channels are returned.
Note that all Cg programs run on every point in an output, not an input array. These two arrays can be of different sizes.

2.3 MinGPU operating modes

‘Hello, World’ code has some implicit features which we need to clarify. First, we always assume that MinGPU input arrays contain grayscale values in the 0 to 255 integer range. This array format is common in computer vision.

On the other hand, all numbers a GPU operates on are floats of 8-32 bit length. Therefore, MinGPU converts input integer arrays into floats. MinGPU uses 32-bit (4-byte) long floats. This is the most supported floating point format in graphics cards today.

A fragment processor encodes every texture pixel as a four float RGBA value (called quad). There is one float value for the red, green, and blue colors and one for the alpha channel. All operations on a quad are always performed in parallel for all four floats by hardware. Cg language conveniently includes a special vector type definition float4 to define a quad.
While all MinGPU input arrays are invariably greyscale, as for array’s GPU representation MinGPU supports two color modes - a luminance and a color mode. The reason for two color modes is that GPU color modes are manufacturer-dependent. Because a luminance mode is natural for nVidia family of processors, it is guaranteed to work in all nVidia cards. However, for all current ATI cards a color mode is required. nVidia also fully supports a color mode. For list of color modes supported by different cards, see tables in [13].

In a luminance mode, every float in the quad holds the same value of one input array cell. In a color mode, MinGPU replicates every input value four times, so that each float in a quad contains the same value. Luminance and color modes are compatible on the level of a C++ code and on the level of a Cg program.

In MinGPU, a color mode is specified on per-texture basis. The luminance mode is the default; textures can be created in the color mode by setting bMode to enRGBA in a call to Array::Create.

2.4 MinGPU Basic examples

In some of following listings we will use a reduced notation. For brevity, we imply that all required initialization has already been done and omit array and program initialization code from C++ program. The example of thus reduced ‘Hello, World!’ is given in Listing 2.

2.4.1 Taking image derivatives

Taking image derivatives is arguably the simplest computer vision algorithm. Image derivatives can be taken in three different directions – dx, dy, and dt. As a derivative kernel, we use Prewit, Sobel or Laplacian 3 by 3 gradient operators.

The C++ code and Cg program for taking image derivative in dx direction are given in Listing 3. Texture contains an input array and Kernel contains a smoothing kernel. If compared to the ‘Hello, World!’ example, this code contains one additional array, Output. This array accumulates the derivative results. Initially, Output array does not contain any values, so we do not copy this array from a CPU to the GPU; we create it right in the GPU instead. The array we use in call to Output.Create receives the results when we download them from the GPU with the CopyFromGPU method.

The programs for taking dy derivations are the same, except for the kernel. The Cg program for dt derivations must take two arrays (image 1 and image 2) as input so it must be somewhat different. The chosen kernels K for this derivative are a 3 by 3 matrix filled with ones, and one. We show Cg programs for dt derivations in Listing 4. Array T1 is an image at time t and array T2 is an image at time t + 1.
Note that we cannot use the same texture for both the input and output arrays. This is not possible because the values of the points in the input array are used in calculations of more than one output point, and the order of calculations is unknown because all calculations are done in parallel.

Listing 3 has the first Cg program with loops. Of all video cards which exist today, only the latest cards from nVidia support loops in hardware, older graphic hardware does not support hardware loops. This is the reason why the Cg compiler unfolds some loops during the compilation. The actual program after unfolding will look similar to one in Listing 5. Whether Cg compiler unfolds loops or not depends on a selected Cg profile. The profile may instruct to unfold only short loops and not to unfold long ones.
A Cg compiler can only unfold trivial loops. Loops with number of iterations dependent on the input parameters cannot be unfolded. This leads to using a fixed number of iterations in Cg program loops, and consequently, multiplies the number of Cg functions. For example, we have to keep a separate derivateve3x3 Cg function for 3 by 3 derivative kernel, derivateve5x5 Cg function for 5 by 5 derivative kernel and so on.

2.4.2 2D Gaussian filtering

Gaussian smoothing uses loops very similar to the derivative loops. We include it here only because Gaussian smoothing is very popular in the computer vision community. The example of a program which implements Gaussian smoothing is given in Listing 6. In this example we use a 5 by 5 pre-computed Gaussian kernel. The implementation is pretty straightforward. The only difference we find from the previous example is its array declaration, G. Here we use Cg array float[5][5] to declare an array, while in the previous example we used Cg matrix float3x3. Both arrays and matrices are pre-defined types, but matrices have additional hardware support. The GPU supports some hardware operations over matrices which it does not support over arrays. Matrices are only available up to a size of 4 by 4, float4x4 is the biggest possible Cg matrix. In case we need arrays larger than 4 by 4 in size, we have to use array declarations or put our data into textures. A Cg compiler allocates arrays on GPU registers. A finite number of hardware registers is available depending on the card manufacturer and model. The video cards in nVidia series 7000 typically have 128-256 registers, while earlier cards had as few as 16 registers. Therefore, it may be reasonable to allocate larger arrays as textures rather than arrays if a number of available registers is not known.

Because both image derivatives and Gaussian smoothing use convolution, it makes sense to define convolution as a separate function which both methods can access. Thus, on the level of C++ code MinGPU is essentially a two-layer library: there are high level functions which define high-level operations like taking derivative or Gaussian smoothing, and primitive operations like convolution. The domain of primitive operations is exclusively the GPU memory; they do not move any data to or from CPU memory. Their names are prefixed with underscore. Listing 7 shows a version of Gaussian smoothing which uses the primitive convolution function.
2.4.3 Computing Image Pyramids
The pyramid computation is another simple vision algorithm [1]. Pyramids are useful data structures for representing image regions. The lowest level of the pyramid is the original image. Each subsequent level in the pyramid is ¼ of the area of the previous level. The process of going from higher to lower resolution is called reduction while the opposite operation is called expansion. We show here only the REDUCE operation, which is computed according to the following formula:

[image: image1.wmf]22

1

22

(,)(,)(2,2).

ll

mn

gijwmngimjn

-

=-=-

=++

åå

In the above equation, gl is an image at pyramid level l, matrix w contains the weight mask, and i, j are the indices for the image’s columns and rows, respectively. A C++ code and a Cg program for REDUCE operation are given in Listing 8.

In this example, the input and output array sizes do not match. Because each pyramid reduction effectively reduces the image size by half in both dimensions, the output array side is half as long as the input array side.

The important question is, how do we determine the values for array elements outside of the array boundaries? In two previous examples we accessed such elements. In all of the examples in this paper, elements located outside of the array are assigned the value of the nearest element in the array. This behavior is hard-coded by a call to OpenGL function glTexParameteri during array creation. There are no other options available, so, if we need to assign some predefined value like 0 to elements lying outside of the array area, we have to pad our array with 0’s.

2.5 Problematic cases

We would like to recount here what we said in Section 1.4 on the GPU limitations. This section may have given the wrong impression that GPU programming is quite simple. In fact, a majority of algorithms either cannot be implemented on current GPUs or can only be implemented with significant difficulties. The problems arise due to two reasons mentioned in Section 1.4. First, the fragment processor does computations for all points in parallel and therefore, the algorithm must be able to work in parallel. In particular, it means that during computation any value from a program processing a point cannot be passed to a program processing another point, because the order in which points are processed is not known. Thus, there are classes of algorithms which cannot be implemented on GPU, notably all recursive algorithms. Also, any global scope variables like counters cannot exist in a parallel algorithm; only constants can be used, or otherwise nothing at all. Another very inconvenient limitation which can cause lots of problems is that the current Cg programs can write only to the location of the element they are currently processing. Quite often algorithms have to be altered in one way or other to account for that limitation.

2.6 Time considerations

We opened this section with the ‘Hello, World’, the simplest MinGPU program. Unfortunately, that program does not gain a speedup due to GPU. While execution of the code takes 2 ms on our GPU compared to 4 ms on a CPU, there is an additional overhead to transmit the array to and from the GPU, requiring 4 and 7 ms for the 4MB array. Algorithms which work according to a ‘single array load – single use’ scheme will probably not gain the significant speedup by uploading to the ordinary GPU. In fact, if the computational part is small, it can even result in a loss of time. To be able to gain a significant speedup from the GPU, an algorithm must work according to the ‘single array load – multiple use’ scheme; it is also desirable that the computational part be large.

In the next section, we illustrate this thesis by presenting running examples of different algorithms which work according to both ‘single load – single use’ and ‘single load – multiple use’ schemes. In the last example (section 5), we show that speedups due to uploading the algorithms built upon the latter scheme to a GPU may be very significant. Some algorithms which are very slow on a CPU can thus easily run in real-time on a GPU.

In performance evaluations we used, unless stated otherwise, nVidia GeForce 7300LE graphics card (‘GPU’) installed in DELL XPS 410 desktop, featuring Core 2 Duo 2.4MHz processor and 2Gb of memory (‘CPU’).

3. Lukas-Kanade optical flow

In this section we show how to compute optical flow using a classic Lukas-Kanade method. The method is described in [24], while here we give only the formulas important to understand our implementation.

Lukas-Kanade optical flow is based on minimizing the brightness constraints in a small patch. We start by defining an energy functional. We take partial derivatives of this functional and equate them to zero. Then, we rearrange and construct an observation matrix. The energy functional is defined as:

[image: image2.wmf]2

().

xyt

EuIvII

=++

å

Its partial derivatives are then computed as,

[image: image3.wmf]2()0.

xxyt

E

IuIvII

u

¶

=++=

¶

å

[image: image4.wmf]2()0.

yxyt

E

IuIvII

v

¶

=++=

¶

å

After we compute the partial derivatives, we build an observation matrix (we omitted formula transformations here):

[image: image5.wmf]2

2

.

xt

xxy

yt

xyy

II

III

u

II

III

v

éù

éù

-

éù

=

êú

êú

êú

-

êú

ëû

ëû

ëû

å

åå

å

åå

Which we abbreviate as
[image: image6.wmf]AuB

=

. In this matrix equation, (u, v) denotes an optical flow. The other remaining parameters are the pre-computed image derivatives Ix, Iy, and Iz. We compute (u, v) for every image pixel by taking the inverse of matrix A and multiplying it by matrix B.

3.1 MinGPU implementation

This example differs from the previous examples in that we must use more than one Cg program to complete a computation. As the intermediate step, we compute the image derivatives dx, dy, and dt over a Gaussian smoothed image. Derivatives dx, dy, and dz are then stored in variables Ix, Iy, and Iz respectively. These operations are performed by separate Cg program calls and all intermediate results are stored in the GPU memory.

We assume that the input images are supplied in an infinite loop, i.e., after image t, image t + 1 comes and so forth. Here we show the computation of the optical flow between images t and t + 1.

In this example, Texture is an array of input images. We load the images t and t + 1 into the GPU. We load input images as well as all derivative kernels Kx, Ky, and Kt into the GPU. Array is a name for a stack of images in a GPU. Every image loaded into the GPU is taken derivatives dx, dy, and dt and averaged over area. This is performed as in Listings 3, 10, while the program calls are performed as in program 1 in Listing 9. We take the derivative for dx, this operation is then repeated for dy and dz. Derivatives in the x and y directions are averaged over time t and t + 1. Derivatives in t direction already account for differences between images at times t and t + 1. The last step in the algorithm is a computation of the A and B matrices as well as the (u, v) optical flow for every point which is shown in the program 2 in Listing 9.

Note that we have run into small problem with this code because we need to return two parameters and the Cg programs normally return only one. Of course, we could have run the computation twice to recover the first parameter, then the second. However, this would have slowed the algorithm by half. An alternative approach is to use two out of the four float values contained in the result variable to store a 2-float result. Since OpenGL drivers in luminance mode average over four floats when retrieving data from the GPU, we must switch to a color mode to run this code properly. After we retrieve data from the GPU every four consecutive floats will constitute a single quad (RGBA). We interpret first two floats in each quad as an (u, v) optical flow and discard the other two floats.

3.2 Time considerations

We have tested our algorithm on a sequence of 31 frames, each 192 x 116 pixels in size. The performance was estimated against the performance of similar Matlab program on the same data set. The GPU program performed all operations in 1.900s, doing 16 frames per second on average. The Matlab program took about 2.600s, 12 frames per second on average. Measurements included image read/write (about 0.8s for matlab program) and not included image display.
The visual results for selected frames are presented in Fig.1.
Every image loaded into the GPU was used twice, once for time t and once for time t + 1. Thus, we obviously use a ‘single load – twice use’ scheme, which results in a relatively modest speedup. Therefore, after we account for memory transfers, the speedup of our GPU (series 7300) versus our CPU is estimated as 60% on the average.

Loaded into the latest series 8800 GPU, this program would perform at about 400 frames per second.

4. 2D Normalized Cross-correlation

In this section, we discuss an implementation of a scaled version of the normalized correlation filters. Many methods of correlation pattern recognition [10, 14, 37], like OT-MACH filters [27, 38], are based upon the normalized cross-correlation (fast implementations of normalized cross-correlation can be found in [3, 23]). The limitation of the correlation filters is that they cannot deal with template scaling. We try to overcome this limitation by scaling a filter in the pre-defined [min, max] range with a step S. This results in a set of filters which are sequentially cross-correlated with an image. The confidence value of a match is obtained by taking the maximum value from the output of all of the filters at the location. The sample application for template scaling is shown on Fig. 2. There, however, may be another case when we need to apply a set rather than one correlation filter to an image: quite often it happens that the matching template can assume slightly different forms (Fig. 3), in which case it is reasonable to use a set of templates instead of one. In this second case, all filters are of the same spatial size, but contain somewhat different templates.

Formally, the normalized cross-correlation
[image: image7.wmf](,)

uv

g

between an image and a filter at every point (u, v) in an image is computed according to the formula [23]:

[image: image8.wmf],

,

22

,

,,

((,))((,))

(,).

((,))((,))

uv

xy

uv

xyxy

fxyftxuyvt

uv

fxyftxuyvt

g

=

å

åå

In this formula,
[image: image9.wmf](,)

fxy

is an input image of Mx x My size,
[image: image10.wmf],

uv

f

 is an average of the input image over a filter area,
[image: image11.wmf]t

 is a square filter of N x N size and
[image: image12.wmf]t

is an mean of a filter. The sums x, y are computed under the window containing a filter
[image: image13.wmf]t

.
4.1 MinGPU implementation

Obviously, it is wise to compute this formula in steps by accumulating and re-using intermediate values. First, we pre-compute all of the sums, then we compute the numerator, denominator and the final value. This computation is repeated for every filter. We maintain a set of filters of different sizes and apply them to every input image sequentially. The highest absolute value for a filter response is then returned as the result.

Calculation of the above formula takes 8 steps. Here are the steps for the same-sized filters:

1. Calculate
[image: image14.wmf],

uv

f

 for every image point.
2. Calculate normalized value of f:
[image: image15.wmf],

(,)

uv

fxyf

-

 for every image point.

3. Calculate
[image: image16.wmf]2

,

,

((,))

uv

xy

fxyf

-

å

for every image point.

4. In a loop for every filter in set:

i. Calculate a mean of each filter
[image: image17.wmf]t

.
ii. Calculate normalized t:
[image: image18.wmf](,)

txuyvt

for every filter t point.
iii. Calculate a value of
[image: image19.wmf]2

,

((,))

xy

txuyvt

å

.
iv. Calculate the whole formula, a numerator and a denominator.

v. In an accumulator array, accumulate a maximum filter response value
[image: image20.wmf](,)

uv

g

for every point (u, v) in an image f.
For differently sized filters all steps are the same, but steps 1-3 are also included under the loop 4, because sums in steps 1-3 are calculated over filter area which is variable in case of differently sized filters.
The C++ program which implements all steps above is not given in Appendix B, we omit it for brevity. Listing 11 shows Cg programs which calculate averages over an input image (steps 1, 3, omitting trivial subtraction in step 2). Averages and sums over filter area are similar to averages over image so Cg programs for those averages are also omitted here. Listing 12 shows a Cg program which calculates the main formula (step 4iv). All other listings can be found in a source code [25].

Double for loops in Listing 11 are of some interest because of hidden overflow potential they may generate. According to Cg specification, basic integer type int is a 32-bit type. However, for loops in Listing 11 do not accept any values over 127 for integer counters, thus prohibiting use of filters larger than 127 by 127. This peculiar feature has an unknown origin and possibly pertains to 8-bit limitation of assembly format of for instruction. It is possible to use floats in place of integers as loop counters in Cg. In this case, there is no 128 (byte) limit, but yet another problem arises for program 1 in Listing 11: filter sizes of more than 110 fail if we use float loop counters. No error messages are generated in both cases, so it is not possible to identify the certain cause of errors; however the second problem likely lies in the limited length of Cg assembly programs. Cg programs in all contemporary GPUs, including series 8000, are limited to 65,535 assembly instructions, either dynamic or static. While the static size of the assembly program 1 in Listing 11 is tiny, its dynamic size (the number of executed instructions) may exceed this limit. In both overflow cases, the calculations went completely wrong with no error messages generated.

Because a Cg loop can not be based on program parameters, all filter sizes must be hard-coded in both C++ and Cg programs. The size bounds of filters L, H, as well as a size step S are thus fixed for every executable module. For C++ program, a possible coding solution is to use a C macro, while Cg does not support macro or name definitions.
4.2 Time considerations

In this section we compare a speed of this GPU algorithm to a speed of built-in normxcorr2 function in Matlab (source file mach.h) on the same data set. Both methods produce the same results which also verify the correctness of our approach.

While this is obviously ‘single load – multiple use’ scheme algorithm, its GPU implementation has its hidden drawbacks. If we look at eight steps above, we see that steps 1, 3, 4i, 4iii can be very efficiently computed recursively [3]. Instead of calculating multiplications in the entire NxN filter area, it is ample enough to make Nx1 subtractions and Nx1 additions when we move to the neighboring point in the image. This effectively lowers time complexity for steps 1, 3, 4iii from O(Mx*My*N2) to O(Mx*My*N). However, because the GPU does not support recursive programs, we have to perform the entire set of multiplications on the GPU. Thus, measured time difference between the GPU and the CPU is not only the function of difference in their performances, but also the inverted function of N, the filter size. The bigger the filter, the more advantage the CPU will have over the GPU.

In out tests, we used an image of 160 x 120 size and 7 filters of 77 x 77 size. For both the GPU algorithm and the CPU’s Matlab normxcorr2 function, we measured times needed to perform actual computations, not including disk and screen input/output operations and auxiliary computations but including memory bus input/output for the GPU. The GPU finished one filter in 0.620s and 7 filters in 1.660s, while normxcorr2 finished 7 filters in 0.575s. This gives a good example that even in ‘single load – multiple use’ scheme, the GPU does not necessarily give an advantage over the CPU - everything depends on the particular algorithm. On the other hand, if we had installed the latest series 8800 video card, which has over 26 times in performance compared to our series 7300 video card, then the GPU would have had about 9 times advantage over the CPU. Also, if filter size is decreased the GPU quickly becomes on the par with the CPU.
Thus, the algorithm must be particularly suitable for the GPU in order to get its performance improved greatly. The next section gives an example of such algorithm.

5. Homography Transformations

In this section, we present another example of an algorithm which works according to a ‘single array load – multiple use’ scheme. This algorithm uses homography transformations. We have implemented this algorithm in Matlab (two versions), C++, and MinGPU. In the results section, we present execution times for both CPU and GPU, and show that the GPU Cg implementation works about 600 times faster than CPU C++ implementation, and about 7,700 times faster than the fastest CPU Matlab implementation.

MRI imagery provides a 3D snapshot of a human body. Thousands of body slices stacked together give a snapshot of the inner human structure. In a somewhat similar idea, a method on how to fuse multi-view silhouettes to reconstruct the visual hull of the 3D object slice by slice in the image-plane has recently been proposed [20]. This method approximates an object by a set of planes (slices) parallel to some reference plane. These slices are related by plane homographies in different views. In this section we present a GPU implementation of this algorithm. The algorithm cannot handle concave objects, however, for many other objects like human bodies it works reasonably well. We provide an outline of the idea here, while transformation formulas and detailed explanation are found in [20].

They take images of a scene from different viewpoints, with uncalibrated cameras, with an aim to recover a 3D representation of the objects in a scene. The ground plane homographies between different viewpoints are estimated using SIFT features and RANSAC algorithm. Vanishing points are computed by detecting vertical lines in a scene and then finding their intersection with RANSAC algorithm. In this way the geometry of the scene is learned.

To create a stack of object slices, they use the fact that warping the silhouettes of an object from the image plane to the plane in the scene using a planar homography is equivalent to projecting a visual hull of the object on the plane. Foreground silhouettes from different views are warped to a reference view using the homographic transformation. Fig. 4c contains an example of what transformed silhouette of original image may look like. After transformations are applied, visual hull intersection is found by overlapping transformed silhouettes. This operation is repeated for every slice because slices reside on different parallel planes and therefore different transformations are required between image and slice planes.

The following two examples illustrate this method. In the first example, we have a single camera and a single object on a rotating pad (Fig. 4 a-b). The pad rotates at a constant speed and the camera captures views at equal intervals of time, which gives us views of the same figure from every 6 degrees, resulting in a total of 60 views. We create 100 slices of this figure. For every slice and every view, we apply a homography transformation to the slice plane (Fig. 4c), and then we overlap (or fuse) the transformation results. Results for slices 0, 35, 75, 99 are given in Fig. 4d – g.

The second example contains a view of an outside scene (Fig. 4 h - i). There are four cameras in the scene, and their relative positions are not known. Some people are present in the scene and we have captured pictures of those people from all four cameras. We find scene geometry as described above. Then, by applying the homography transformations, we construct a 3D sliced representation of these people (Fig. 4j). The results are coarser than ones in the first example, because here we are using just four views as compared to 60 in the first example. The more views we have, the better the outline of the resulting slice.

5.1 MinGPU implementation

As an input to our algorithm, we have multiple views of the same scene plus all required planar transformation matrices (of 3 by 3 size). All input views contain binary values, 0 for background pixels and 1 for foreground pixels. The desired number of slices is 100. For every slice, each view will have a separate transformation matrix to a ground plane.

We preload all views into the GPU. Then, for every slice, we apply a homography transformation to every view and integrate the results in the accumulator array. After all views are processed, the accumulator array contains the ‘sliced’ image (Fig. 4 (d-g, j)) which is transferred back to the CPU. Then, the accumulator array is zeroed and we proceed to the next slice. Thus, this method clearly belongs to the ‘single image load – multiple use’ category.

When we apply the homography transformation to a view, the resulting image happens to be approximately 10 times larger in size than the original view, so points become too sparse. To overcome this problem, we have chosen to use inverse transformations. For every point in the resulting image, we apply an inverse transformation and find its value in the original view through bilinear interpolation. We also crop and rescale the resulting image. We take a region of 200x180 points centered at the coordinate origin. When filling this region, we consider every 5th point in both the x and y directions. The C++ code and Cg program are given in Listing 13 with inline comments.

5.2 Time considerations

We implemented and ran the homography transformations algorithm on both the CPU and GPU. The CPU version was implemented in both C++ and Matlab. For evaluation, we used 60 views of the same object and generated 100 slices. A speed comparison gives some understanding of the relative performance of CPU and GPU processors. Execution times are given in Table 1.

From this table we see that the GPU implementation works about 600 times faster than the CPU implementation, and about 7,750 times faster than the Matlab implementation. This 600 times speed up was achieved on series 7300 graphics processor. Note that we have not tested this program on series 8800 GPU because execution time would be negligible compared to overhead generated by input/output operations, so it would be hard to come up with an unbiased performance measure.
In the Section 1, we have mentioned that maximum speedup of our GPU over our CPU cannot exceed approximately 620 times, so the speedup we obtained lies at the theoretical limit for this hardware. However, we also have to take into account that CPU code is implemented in C++, which implies it does not have the adequate complexity of the GPU Cg code; especially if we consider that CPU C++ code was compiled with Microsoft Visual Studio, which has never been regarded as a fast compiler. So, there is some inherent bias in C++ CPU to Cg GPU time comparison. However, just a simple speed improvement of 7,750 times over similar Matlab code is quite stunning and impressive. In practice, it means that while Matlab takes about three hours to compute a single transformation, MinGPU does the same in less than 2 seconds! The time to load input images from a hard drive was not counted here; it is usually 1-5 additional seconds, depending on the hard drive model, operating system state and other parameters.

If we increase or decrease the number of views or slices, the execution time increases or decreases correspondingly, which means that the time spent has a linear dependence on the number of views and slices. However, tests have shown that the time starts increasing exponentially if the image size exceeds some threshold. This threshold seems to vary depending only on the video card you use, so it is a hardware threshold. For our nVidia 7300LE graphics card, we found it at approximately 6MB (Fig. 5). This threshold roughly corresponds to the size of the installed GPU memory cache. If the total amount of data accessed by Cg program exceeds this threshold, processing time grows according to exponential law (Fig. 5).

6. Conclusions

We have created a small library, MinGPU, which proved to be a very practical tool in our research. Using MinGPU, we have implemented and tested some computer vision algorithms on graphics processor (GPU), and have found that GPUs are indeed very useful for computer vision researchers. Not only that they can offer a considerable speed up, they make possible for many algorithms to move to real-time domain. We have to point that due to inherent CPU limitations real-time execution is often not feasible on CPU even in remote future. Today’s GPUs are in fact SIMD-type (Sinlge Instruction Multiple Data) processors which already work hundreds of times faster than CPUs and their productivity continues to rise astoundingly quickly. Thus it is not hard to conclude that boom of GPGPU computing is bound to happen in coming years.
Acknowledgements

We wish to express our gratitude for all the help we received in writing of this paper. We would like to thank Andrew Miller for his useful advices and help on GPU programming. The dataset and method of homography transformations is a courtesy of Saad M. Khan. UAV IR dataset is a courtesy of VACE CLEAR evaluation.
References

[1]. Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J., Ogden, J. M.: Pyramid methods in image processing, RCA Engineer, 29(6), 33-41 (1984).

[2]. ATI CTM Guide. AMD Technical Reference Manual (2006).

[3]. Briechle, K., Hanebeck, U.D.: Template Matching Using Fast Normalized Cross Correlation. Proceedings of SPIE, 4387, (2001).

[4]. Buck, I. et al.: Brook for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on Graphics, 23(3), 777-786 (2004).

[5]. BrookGPU source code: http://brook.sourceforge.net
[6]. Colantoni, P., Boukala, N., Da Rugna, J.: Fast and accurate Color Image Processing using 3D Graphics Cards. Vision, Modeling and Visualization conference (VMV), (2003).

[7]. Computer Vision on GPU, paper list: http://openvidia.sourceforge.net/papers.shtml
[8]. Cg Toolkit User’s Manual. (2005).
[9]. Cg Toolkit: http://developer.nvidia.com/object/cg_toolkit.html
[10]. Duda, R. O., Hart, P. E., Stork, D. G.: Pattern Classification (2nd edition), Wiley-Interscience (2000).

[11]. Fung, J.: GPU Gems 2, chapter ‘Computer Vision on the GPU’, 649-666. Addison Wesley (2005).

[12]. Fung, J., Mann, S., Aimone, C.: OpenVidia: Parallel GPU Computer Vision, Proceedings of ACM Multimedia, 849-852 (2005).

[13]. Göddeke, D.: Online tutorial on GPGPU. http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html
[14]. Gonzalez, R. C., Woods, R. E.: Digital Image Processing, Reading, Massachusetts: Addison-Wesley (1992).

[15]. GPGPU: General Purpose Computation on Graphics Hardware. ACM SIGGRAPH Course (2004).
[16]. GPGPU community: www.gpgpu.org
[17]. Han, Y., Wagner, R. A.: An Efficient and Fast Parallel-Connected Component Algorithm. Journal of the ACM 37:3, 626-642 (1990).

[18]. Heymann, S., Müller, K., Smolic, A., Fröhlich, B., Wiegand, T.: SIFT Implementation and Optimization for General-Purpose GPU. International Conference on Computer Graphics, Visualization and Computer Vision (WSCG), (2007).
[19]. Introduction to Image Processing on GPU. nVidia Technical brief (2005).

[20]. Khan, S. M., Yan, P., Shah, M.: A Homographic Framework for the Fusion of Multi-view Silhouettes, to appear in ICCV 2007.

[21]. Kilgariff, E., Fernando, R.: GPU Gems 2, chapter ‘The GeForce 6 Series GPU Architecture’, 471-492. Addison Wesley (2005).

[22]. Labatut, P., Keriven, R., Pons, J-P.: Fast Level Set Multi-View Stereo on Graphics Hardware. 3rd International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), 774-781, (2006).

[23]. Lewis, J.P.: Fast Normalized Cross-Correlation. Vision Interface, 120-123, (1995).
[24]. Lucas, B. D., Kanade, T.: An iterative image registration technique with an application to stereo vision. Proceedings of the International Joint Conference on Artificial Intelligence, 674-679 (1981).

[25]. MinGPU source: www.cs.ucf.edu\~vision\MinGPU
[26]. MinGPU Google group: http://groups.google.com/group/MinGPU

[27]. Mahalanobis, A., Vijaya Kumar, B. V. K., Song, S., Sims, S. R. F., Epperson, J. F.: Unconstrained correlation filters. Applied Optics 33 (17), 3751-3759 (1994).

[28]. Moreland, K., Angel, E.: The FFT on GPU. SIGGRAPH 2003, 112-119 (2003).

[29]. NVIDIA(R) GeForce 7950 GX2 Technical Specifications.

[30]. NVIDIA CUDA Compute Unified Device Architecture, Programming Guide.

[31]. NVIDIA GeForce 8800 GPU Architecture Overview. nVidia Technical brief (2006).

[32]. Meindl, J. D.: Low Power Microelectronics: Retrospect and Prospect. Proceedings of the IEEE 83(4), 619 – 635 (1995).
[33]. OpenVIDIA GPU computer vision library. http://openvidia.sourceforge.net
[34]. Ohmer, J., Maire, F., Brown, R.: Implementation of Kernel Methods on the GPU. Proceedings 8th International Conference on Digital Image Computing: Techniques and Applications (DICTA), 543-550, (2005).
[35]. Rumpf, M., Strzodka, R.: Level Set Segmentation in Graphics Hardware. Proceedings of IEEE International Conference on Image Processing 3, 1103-1106 (2001).

[36]. Sh GPU metaprogramming library: http://www.libsh.org/
[37]. Vijaya Kumar, B.V.K., Mahalanobis, A., and Juday, R. D.: Correlation Pattern Recognition. Cambridge University Press (2005).
[38]. Vijaya Kumar, B. V. K., Carlson, D. W., Mahalanobis, A.: Optimal trade-off synthetic discriminant function filters for arbitrary devices. Optic Letters 19 (19), 1556-1558 (1994).

[39]. Yang, R., Pollefeys, M.: Multi-Resolution Real-Time Stereo on Commodity Graphics Hardware. IEEE Computer Vision and Pattern Recognition, 211-218, (2003).

[40]. Yang, R., Welch, G.: Fast image segmentation and smoothing using commodity graphics hardware. Journal of Graphics Tools, 7(4):91-100, (2002).

Appendix A. MinGPU library

1. MinGPU class structure

MinGPU class structure is intentionally made as simple and small as possible. MinGPU contains two classes, Array and Program. Class Array defines an array (a texture) in GPU memory, while class Program defines a program in GPU memory. The library also includes MinGPUInit() function which is implicitly called when first MinGPU class is instantiated.

2. MinGPU methods. Class Array

Class Array has three methods: Create, CopyToGPU, and CopyFromGPU.

bool Array::Create(float *pData, unsigned int dwCols, unsigned int dwRows, BYTE bMode)
This method defines a new array in GPU memory. The Create method is supplied with a pointer to an array as well as a number of columns and rows in this array. pData must either point to an allocated space of dwCols by dwRows size, or be null if the array we define will never be copied to the GPU memory. If this array is copied from the GPU memory and this parameter is null, then the array is created. The last parameter, bMode, specifies whether array shall be created in luminance or color mode.

Note that array data from pData is not transferred to GPU in this method, it is done later, if needed, by use of CopyToGPU method.

bool Array::CopyToGPU()

This method copies an array data from computer memory to GPU.
bool Array::CopyFromGPU()

This method copies an array data from GPU to computer memory.
3. MinGPU methods. Class Program

Class Program has three methods: Create, SetParameter and Run.

bool Program::Create(char *szFilename, char *szEntryPoint)
This method creates and, if needed, compiles a new Cg program. Program is stored in the external file szFilename. szEntryPoint holds a name of the entry function in the program. Programs files must be located either in working directory, or in its ‘scripts’ subfolder. Files with ‘asm’ extension are presumed to contain pre-compiled binary programs, otherwise file contains a source code which needs to be compiled. This function searches the folder for a binary program corresponding to the source code. If it is found and it has a timestamp later than the source file, it is loaded instead. Otherwise, the source code is compiled and stored as binary code in a file with ‘asm’ extension in the same folder. This eliminates the need to recompile a program each time it is loaded (eliminates 300-600ms delay).
bool Program::SetParameter(int nType, char *szName, void *pValue)

Most functions in Cg programs have some input parameters. For instance, we have to specify some input parameters for the entry function before we execute a program. Parameters can be values, arrays, matrices, or textures. Enumerator nType specifies the type and number format of input parameter, string szName contains its Cg program name and pValue holds the parameter value.

Besides parameters we set with SetParameter method, functions may have some parameters which refer to pre-defined names [8]. For example, parameter which refers to name TEXCOORD0 will automatically receive the row and column values for the currently processed pixel.

bool Program::Run(Array *output)

This method executes a Cg program on the GPU. Array output accepts the output of this program; it is filled as a result of program execution. The program is run separately for every cell in array output. A new value is generated for every cell in this array.

All methods in classes Array and Program return true if successful and false otherwise.

4. Library structure, installation and required libraries

MinGPU library consists of four Visual Studio projects. The first project, MinGPU, contains the MinGPU library. Computer vision algorithms done on MinGPU reside in Vision project. There is also a helper project, Math, which contains math functions used in Vision project. Those three projects generate C++ libraries on compilation. The fourth project, GPUTest, serves as a testbed for those three libraries. It generates executable code on compilation. GPUTest contains examples for all computer vision algorithms in Vision project.
Before using MinGPU, three other libraries must be downloaded from internet and installed. These are Cg Toolkit [9], OpenGL Utility Toolkit (GLUT) and OpenGL Extensions (GLEW). The good description of where to download those libraries and how they are useful in GPU computing can be found at [13]. OpenGL 2.0 drivers are supplied with Windows XP, it is important to install these also.
Appendix B. Source listings

Listing 1 (‘Hello, World’):

Array Array;

Program Program;

Array.Create(fpArray, cols, rows, Luminance);

Array.CopyToGPU();

Program.Create(strProgramFile, "main");

Program.SetParameter(enTexture, "texture", (void *) Array.Id());

Program.Run(&Array);

Array.CopyFromGPU();

float4 main (

 float2 coords : TEXCOORD0,

 samplerRECT texture) : COLOR

{

 float4 result;

 float4 val = texRECT(texture, coords);

 result = val + 1;

 return result; {or, equally, return 1 + texRECT(texture, coords);}
}

Listing 2 (‘Hello, World’ reduced):

…

Array.CopyToGPU();

Program.SetParameter(enTexture, "texture", (void *) Array.Id());

Program.Run(&Array);

Array.CopyFromGPU();

Listing 3 (image derivative in x, y direction):

…

Output.Create(NULL, cols, rows, Luminance);

Array.CopyToGPU();

Program.SetParameter(enTexture, "T", (void *) Array.Id());

Program.SetParameter(enMatrixf, "K", (void *) Kernel.Id());

Program.Run(&Output);

Output.CopyFromGPU();

float4 Derivative3x3 (

 float2 C : TEXCOORD0,

 samplerRECT T, uniform float3x3 K) : COLOR

{

 float4 result = 0;

 for (int row = 0; row <= 2; row ++)

 {

 for (int col = 0; col <= 2; col ++)

 {

 result = result + K[row][col] * texRECT(T, C + float2(col - 1, row - 1));

 }

 }

 return result;

}

Listing 4 (image derivative in t direction):

float4 DerivativeT3x3 (

 float2 C : TEXCOORD0,

 samplerRECT T1, samplerRECT T2, uniform float3x3 K) : COLOR

{

 float4 result = 0;

 for (int row = 0; row <= 2; row ++)

 {

 for (int col = 0; col <= 2; col ++)

 {

 float4 p1 = texRECT(T1, C + float2(col - 1, row - 1));

 float4 p2 = texRECT(T2, C + float2(col - 1, row - 1));

 result = result + K[row][col] * p2 - K[row][col] * p1;

 }

 }

 return result;

}

float4 DerivativeT1x1 (

 float2 C : TEXCOORD0,

 samplerRECT T1, samplerRECT T2) : COLOR

{

 return texRECT(T2, C + float2(col, row)) - texRECT(T1, C + float2(col, row));

}

Listing 5 (image derivative, unfolded loops):

float4 Derivative3x3 (

 float2 C : TEXCOORD0,

 samplerRECT T, uniform float3x3 K) : COLOR

{

 float4 result = 0;

 result = result + K[0][0] * texRECT(T, C + float2(-1, -1));

 result = result + K[0][1] * texRECT(T, C + float2(-1, 0));

 …
 result = result + K[2][1] * texRECT(T, C + float2(1, 0));

 result = result + K[2][2] * texRECT(T, C + float2(1, 1));

 return result;

}

Listing 6 (Gaussian smoothing):

…

Array.CopyToGPU();

Gaussian.CopyToGPU();

Program.SetParameter(enTexture, "T", (void *) Array.Id());

Program.SetParameter(enArrayf, "G", (void *) Gaussian.Id());

Program.Run(&Output);

Output.CopyFromGPU();

float4 Gaussian5x5 (

 float2 C : TEXCOORD0,

 samplerRECT T, uniform float G[5][5]) : COLOR

{

 float4 result = 0;

 for (int row = 0; row <= 4; row ++)

 {

 for (int col = 0; col <= 4; col ++)

 {

 result = result + G[row][col] * texRECT(T, C + float2(col-2, row-2));

 }

 }

 return result;

}

Listing 7 (Gaussian smoothing with the use of convolution primitive):

…
Out.Create(NULL, cols, rows, Luminance);

Array.CopyToGPU();
float K[3][3] = {{-1, 0, 1}, {-1, 0, 1}, {-1, 0, 1}}; {dx derivative kernel}
_convolve(In, Out, (float *) &K, 3);

Out.CopyFromGPU();
Listing 8 (pyramid REDUCE operation):

…

Array.CopyToGPU();

Mask.CopyToGPU();

Program.SetParameter(enTexture, "T", (void *) Array.Id());

Program.SetParameter(enArrayf, "Mask", (void *) Mask.Id());

Program.Run(&Output);

Output.CopyFromGPU();

float4 ReducePyramid (

 float2 C : TEXCOORD0,

 samplerRECT T, uniform float Mask[5][5]) : COLOR

{

 float4 result = 0;

 for (int row = 0; row <= 4; row ++)

 {

 for (int col = 0; col <= 4; col ++)

 {

 result = result + Mask[row][col] * texRECT(T, float2(2 * C.x + col - 2, 2 * C.y + row - 2));

 }

 }

 return result;

}

Listing 9 (Lukas-Kanade optical flow):

…

Array[t].CopyToGPU();

Array[t + 1].CopyToGPU();

 { Take x, y, t derivatives from both input images, and average them }
 float Kx[3][3] = {{0, 0, 0}, {0, -1, 1}, {0, 0, 0}};

 fRet &= _convolve(Array[t], Ix, (float *) &Kx, 3);

 fRet &= _convolve(Array[t + 1], Itmp, (float *) &Kx, 3);

 fRet &= _average(Itmp, Ix);

 float Ky[3][3] = {{0, 0, 0}, {0, -1, 0}, {0, 1, 0}};

 fRet &= _convolve(Array[t], Iy, (float *) &Ky, 3);

 fRet &= _convolve(Array[t+1], Itmp, (float *) &Ky, 3);

 fRet &= _average(Itmp, Iy);

 fRet &= _subtract(Array[t + 1], Array[t], It);

 { Calculate sums in 5x5 area }

 Program Program;

 fRet &= Program.Create("opticalflow.cg", "Sum2");

 fRet &= Program.SetParameter(Program::enTexture, "I", (void *) Ix.Id());

 fRet &= Program.Run(&SIx2);

 { … do the same for all other 4 sums }

 { calculate [u, v] from A*[u, v] = B matrix equation }
 fRet &= Program.Create("opticalflow.cg", "OpticalFlow");

 fRet &= Program.SetParameter(Program::enTexture, "SIx2", (void *) SIx2.Id());

 fRet &= Program.SetParameter(Program::enTexture, "SIy2", (void *) SIy2.Id());

 fRet &= Program.SetParameter(Program::enTexture, "SIxIy", (void *) SIxIy.Id());

 fRet &= Program.SetParameter(Program::enTexture, "SIxIt", (void *) SIxIt.Id());

 fRet &= Program.SetParameter(Program::enTexture, "SIyIt", (void *) SIyIt.Id());

 fRet &= Program.Run(&result);

 fRet &= result.CopyFromGPU();

float4 OpticalFlow (

 float2 C : TEXCOORD0,

 samplerRECT SIx2, samplerRECT SIy2,
 samplerRECT SIxIy, samplerRECT SIxIt, samplerRECT SIyIt) : COLOR

{

 float2x2 A;

 A[0][0]= texRECT(SIx2,C).r;

 A[0][1]= texRECT(SIxIy,C).r;

 A[1][0]= texRECT(SIxIy,C).r;

 A[1][1]= texRECT(SIy2,C).r;

 float2 B;

 B[0] = - texRECT(SIxIt, C).r;

 B[1] = - texRECT(SIyIt, C).r;

 float2x2 invA = 1/determinant(A) * float2x2(A[1][1], -A[0][1], -A[1][0], A[0][0]);

 float2 uv = mul(A, B);

 float4 result;

 result.r = uv[0];

 result.g = uv[1];

 return result;

}

Listing 10 (image sum (squares)):

float4 Sum2 (

 float2 C : TEXCOORD0,

 samplerRECT I) : COLOR

{

 float4 val;

 float4 result = 0;

 for (int row = -2; row <= 2; row ++)

 {

 for (int col = -2; col <= 2; col ++)

 {

val = texRECT(I, C + float2(col, row));

 result = result + val * val;

 }

 }

 return result;

}
Listing 11 (normalized cross-correlation):

{ computing the image average under the 77 by 77 shifting window }
float4 favg (

 float2 C : TEXCOORD0,

 samplerRECT I) : COLOR

{

 float4 result = 0;

 for (int row = 0; row < 77; row ++)

 {

 for (int col = 0; col < 77; col ++)

 {

 result = result + texRECT(I, float2(C.x + col, C.y + row));

 }

 }

 return result / (77.0 * 77.0);

}
{ computing the squared sum under the 77 by 77 shifting window }
float4 Snorm2 (

 float2 C : TEXCOORD0,

 samplerRECT fnorm) : COLOR

{

 float4 val = 0;

 float4 result = 0;

 for (int row = 0; row < 77; row ++)

 {

 for (int col = 0; col < 77; col ++)

 {

 val = texRECT(fnorm, float2(C.x + col, C.y + row));

 result = result + val * val;

 }

 }

 return result;

}

Listing 12 (main formula in normalized cross-correlation):

float4 Correlation (

 float2 C : TEXCOORD0,

 samplerRECT fnorm, samplerRECT tnorm,

 samplerRECT Snorm2, samplerRECT Tnorm2) : COLOR

{

 float4 numerator = 0;

 float4 denominator = sqrt(texRECT(Snorm2, C) * texRECT(Tnorm2, float2(0, 0)));

 for (int row = 0; row < 77; row ++)

 {

 for (int col = 0; col < 77; col ++)

 {

 numerator = numerator + texRECT(fnorm, float2(C.x + col, C.y + row)) * texRECT(tnorm, float2(col, row));

 }

 }

 return abs(numerator / denominator);

}

Listing 13 (homography transformation):

{Initialize script. Set script parameters that won’t change later}

Script Script;

Script.Create(strScript_Homography, "main");

Script.Select();

Script.SetParameter(enFloat, "ratio", (void *) &fRatio);

Script.SetParameter(enFloat, "crop_x1", (void *) &crop_x1);

Script.SetParameter(enFloat, "crop_y1", (void *) &crop_y1);

{For every slice}

for (int slice = 1; slice <= SLICES; slice++)

{

 {Create and load empty output texture}

 Texture Accumulator;

 Accumulator.Create(fbuf, crop_x, crop_y);

 Accumulator.CopyToGPU();

 {Bind script to this texture}

 Script.SetParameter(enTexture, "result", (void *) & Accumulator)

 {For every view}

 for (int i = 1; i <= VIEWS; i++)

 {

{set script parameters - view and homography matrix}

Script.SetParameter(enTexture, "view", (void *) &View);

Script.SetParameter(enMatrixf, "H", &HMatrix);

{run the script}

Script.Run(&Accumulator);

 }

 {recover results from the script}

 Accumulator.CopyFromGPU();

}

{Cg Script}

float4 main (

 {current coordinates in cropped region}

 float2 coords : TEXCOORD0,

 {3x3 homography transformation matrix}

 uniform float3x3 H,

 {(x, y) gives offset of cropped region in target image}

 uniform float ratio, uniform float x, uniform float y,

 {view refers to input view image, result refers to accumulator image}

 uniform samplerRECT view, uniform samplerRECT result) : COLOR

{

 {Input coordinates, coord, contain coordinates in cropped region, 200x180}

 {To do proper transformation, we have to convert coords to target image}

 float3 C = float3(coords[0] * ratio + x, coords[1] * ratio + y, 1.0);

 {the next three lines do homography transformation}

 float k = H[2][0] * C[0] + H[2][1] * C[1] + H[2][2] * C[2];

 float A = (H[0][0] * C[0] + H[0][1] * C[1] + H[0][2] * C[2]) / k;

 float B = (H[1][0] * C[0] + H[1][1] * C[1] + H[1][2] * C[2]) / k;

 {now take already accumulated value from the result …}

 float4 x = texRECT(result, coords);

 {… and add a new value to it}

 float4 y = texRECT(view, float2(A, B));

 return x + y;

}

[image: image21.png]

 [image: image22.png]

 [image: image23.png]

 [image: image24.png]

[image: image25.png]

 [image: image26.png]

 [image: image27.png]il
7 '

 [image: image28.png]

Fig. 1. The results of Lukas-Kanade optical flow algorithm implemented on GPU. The first row shows the original images, the second row shows the computed optical flow.
[image: image29.jpg]

 [image: image30.jpg]

 [image: image31.jpg]

 [image: image32.jpg]

Fig. 2. This figure illustrates a possible application for GPU scaled correlation filters. UAV IR night video has occasional inclusions of people of unknown scale which must be detected. The video is pre-processed with thresholds and Harris corner detector, which leaves about 30-150 possible people candidates in every frame. The exact scale of people is unknown because aircraft altitude keeps changing; however, there exists a limiting range for the scales, both upper and lower. People are being detected by applying a set of differently sized correlation filters to every possible position. Resulting detections are then tracked to ensure their consistency.
[image: image33.png]

 [image: image34.png]

 [image: image35.png]

 [image: image36.png]

Fig. 3. The correlation filters implemented on GPU. Railroad track video is made with a camera fixed over tracks, so the scale of objects in a field of view does not change. Our purpose is to detect and count rectangular rail fastener clips which hold the rail in place. However, besides being spatially rotated for up to 30 degrees clips can be of slightly different geometric/visual appearances by manufacturer’s design. In a set of filters we put a filter for every possible filter appearance. Filters are created using OT-MACH algorithm with a rotation step of 3 degrees, and then applied sequentially to an image.
[image: image37.png]

 [image: image38.png]

 [image: image39.png]

(a)
(b)
(c)

[image: image40.png]

 [image: image41.png]

 [image: image42.png]

 [image: image43.png]

(d)
(e)
(f)
(g)

[image: image44.png]

 [image: image45.png]

 [image: image46.png]

(h)
(i)
(j)

Fig. 4. The results of implementation of visual hull intersection method for reconstructing object model using plane homographies implemented on GPU. (a-b) solid figure on a rotating pad; (c) its homography transformation; (d-g) resulting slices: feet, legs, lower torso, upper torso; (h-i) two views; (j) their slice at feet level.
	
	Time Per Slice
	Total Time

	MATLAB

(for loops)
	10.5 min
	Hours

	MATLAB
(built-in functions)
	2 min 35 s
	Hours

	C++ CPU
	12 s
	about 25 min

	GPU
	0.02 s
	3.5 s
(including 1.5s file read)

Table 1. Comparative execution times for homography transformations.

[image: image47]
Fig. 5. Time versus image size for visual hull intersection using homography transformations.
7

[image: image48.png]Drocessing time, s

0

60

50

40

Ell

20

10

Time versus image size

m

800

1800

200

400 7100
mage size, kb

a0

12800

15600

19600

_1250277454.unknown

_1250277577.unknown

_1250277793.unknown

_1250278022.unknown

_1250278404.unknown

_1250278560.unknown

_1250278358.unknown

_1250277970.unknown

_1250277785.unknown

_1250277510.unknown

_1249175533.unknown

_1250277424.unknown

_1250277435.unknown

_1249175538.unknown

_1249175517.unknown

_1249175525.unknown

_1249167701.unknown

_1249170542.unknown

